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1. INTRODUCTION AND STATEMENT OF RESULTS

The following result is well known in the theory of the distribution of
zeros of polynomials.

THEOREM A (Enestrom-Kakeya). If
Ay Z Ay 2 g = 2 a = dy >0, (1.1)
then, for | z| > 1, Ty_o axz® # 0.

There already exist in the literature [1; 3, Theorems 1-4; 5, Theorem 3; 6]
some extensions of the Enestrom-Kakeya theorem. Govil and Rahman
[3, Theorems 2, 4] generalized this theorem to polynomials with complex
coeflicients, first by considering the moduli of the coefficients to be monoto-
nically increasing and then by assuming the real parts of the coeflicients to be
monotonically increasing.

While refining the results of Govil and Rahman [3, Theorems 2, 4], we [2]
proved the following

THEOREM B. Let p(z) = ;o @12* be a polynomial with complex coeffi-
cients such that

larga, — B| < a < 7/2, k=0,1,..n,
Jor some real B, and

lay| Z @y =2 Z ] =g | >0 (1.2)
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2 GOVIL AND JAIN

then p(z) has all its zeros in the ring-shaped region given by

!

where
n—1

2sin x
R = cos o + sin o + Z tay|.

THEOREM C. Let p(z) = Yo arz®. If Reay — oy, Imay == Be,s for
k=0,1,2,...,n and
Qp Z Opq = " 2oy =20y 20, a, > 0,

then p(z) has all its zeros in the ring-shaped region given by

‘aO' \<\|21‘<\\R1,

RiT2Ro, + Ry 1B, 1 — (2 + 1B,y D]

where
1 n—1
+a—[2 Y 1Bl + lﬁnt}.
n k=0

In this paper, we have sharpened Theorems B and C. More precisely,
we prove

THEOREM 1. Let p(z) = Sr_o axz® (220) be a polynomial with complex
coefficients such that

larga, — B| < o < 72, k=01,..,n,
Jor some real B, and
lan | Z | any | = zZlal Zlal;
then p(z) has all its zeros in the ring-shaped region given by

Ry < z| <Ry,

Here
_c i 1 2 1‘41 1/2
Rzﬁz(lanl +2 |an1 Ml) lanls ’
and
1 ;
Ry = s [=RE 161 (M — [ a0 ) + {4 [ | R2My'

+ Ry* | b 1AMy — | @ D3],
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where
M1:|a‘n!R,
. n | a | .
M, = |a,| R, [R+R2—I |(cosoc—l—51noc)],
c:]an_aﬂAlla
b=a —a,, (1.3)

and R is as defined in Theorem B.

THEOREM 2. Let p(z) = ZZ=0 az*. If Rea, = oy, Ima, = B,, for
k=0,1,.,n,and
Up Z Qyyg 22 Op_g 2 2 0y 22 Oy = 0, a, >0,
then p(z) has all its zeros in the ring-shaped region given by

R, < |z| <Ry.

Here
el 1 ¢ /1 1 2 My )12
Re=5G =)+ ) R
1
Rs”——m[_R42|b|(M4_ [ay )
+{41ay| REMP? 4 RA | b 1AM, — | a, )23/,
where
M3 - (anl 5
M, = R4"[(0‘n =+ | ﬁn |) Ry + o Ry — (040 + /90 |)],
c == Ian —dp J:

b=a —aq,

and Ry is as in Theorem C.

As remarked earlier, Theorems 1 and 2 are respectively the refinementsof
Theorems B and C. For the sake of completeness we shall verify that
Theorem 1 sharpens Theorem B and for this, we shall prove that

R >R, (1.4)
and
]
RRR( a, Jlag) — (cosa L snw] = Ro- (1.3)

For this, note that

R= ot = 5 1 1 )+3£'2‘(1czlnr_ﬂlll)2+lil|zm’
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2M12 // C(“'lll - 4 a, ) i(ci("‘/[], - da, )2 = 4‘}‘/113 a, ‘Zl _;v

which is true if
(M, — XM, —la,H == 0. (1.6)

Since (1.6) obviously holds, (1.4) follows. To show (1.5) we have obviously
from (1.4)
]
R M2R( a, I/ @y ) — (cOS o + sin -v)]
. ]
CRITR - R a, T, — (cos 2+ sin )]

G| Ry
= (1.7
Hence it is sufficient to show that
a,: Ry,
W < Ry (1.8)
Now (1.8) holds if
(Ry 1 b — M)(My — ay i) < 0. (1.9)

As (1.9) is evidently true, (1.8) follows. The fact that Theorem 2 is a refinement
of Theorem C can be proved on similar lines and we omit the proof.

In general Theorems 1 and 2 give better results than Theorems B and C,
but in some cases the results obtained by Theorems 1 and 2 are significantly
better than those obtained respectively from Theorems B and C. To illustrate
this, we consider

p(z) = 225 = 2V3(1 4 i) 2t - 3V - (1 i) 22 - (1 i)z — 1
R B == /2.
By Theorem B, we get that all the zeros of p(z) are contained in the region

5.6017 x 1078 < | z| < 8.5605, while Theorem 1 gives that all the zeros of
p(z) are contained in 33925 > 109 < | z | <{ 3.2833.

2. LEMMAS

Lemma 1. Ifjarga, —B| <o < #f2,larga,_; — B! < x,and| a; | =
Lay_y |, then
lay —apy | <{(a| —|lap_yDcosw 4 (Ja, ! +-1a, ") sinaj.

Lemma 1 is due to Govil and Rahman [3].
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Lemma 2. If f(2) is analytic inside and on the unit circle, | f(z)] < M on
lz| =1,f(0) = a, where | a| << M, then

, Miz|+|a|
P M —
S FINFT
Jor|z| < 1.
Lemma 2 is a well-known generalization of Schwarz’s lemma.
The following lemma is due to Govil, Rahman, and Schmeisser {4].

LEMMA 3. If f(z) is analytzc in lz] <1, f(O) =a, where [a| <1,

(—Ja)|zF+1bl]z]+]al(—|al)
OIS TaTa —TahzE+ 1611z T d —Ta)

The example f(z) = (a + (b/(1 + @)z — 2B))(1 — (b](1 + @)z — az?)
shows that the estimate is sharp.

One gets easily from Lemma 3, the following

Lemma 4. If f(z) is analytic in |z]| < R, f(0) =0, f'(0) == b, and
[ f) < M for|z| = R, then, for | z| <R,

Miz| Miz|+Rb]
@ < T T

3. PROOFS OF THE THEOREMS
Proof of Theorem 1. Consider
€6 = (1= DpE) = —a,2" + ¥ (@ — ) F
= —a,z"" + P(2), say. - G.D
If 7(z) denotes the polynomial 3 ; (¢, — ai_y) z** + a,z", then T(z) =
z"P(1/z) and for | z | = 1, we have
T < 3 = |+ ol

< z (tap | —lay41)cos
k=1

+ Y (lax] + @y )sina+[a]  (by Lemma 1)
k=1
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n—1
= |a,|(cos o4 sina) +2sina Y |a;]
k=0
— gy (cos o -+ sinw — 1)
n—1
<|a,|(cosa-+sina)--2sina Yy |a]
k=0

=M,.
Hence, by the maximum modulus principle,
I TO) = [a, —an 1| <M.
Applying Lemma 2 to the function 7(z), we get for |z | < 1,

Mlizi—‘r[an_an—l[

[y, — Ay | 2|+ M,

[ T(z)] < M,
which implies that

M]]Z]+lan_an~1|
Jan_ananZ\"{'Ml’

e8] <

lz] < L. (3.2)

If R > 1, then (I1/R) e~ lies inside the unit circle for every real 6, and from
(3.2) it follows that

M1+|an_an—1iR

(1) < n
| P(Re*®)| < M R T4 4. L MR’ (3.3)
for every R >> 1 and 6 real.
Thusfor |z| =R > 1,
|g(Re1,9)| 2 i _anRﬂ—rlei(nfl)ﬂ ,]\_ P(Rele)[
> |a, | R — | P(Re')|
! - M%_Rian_‘an—I
> | R+l n 1 1
= ! an i R MIR MlR + ‘ an _ an_l [ (by (3‘3))
) ‘ M, + cR
~. n+1 _ n 1
> @y | R — MR (by 13))
Rn
ZW[MH%IW—CR(Ml— [a, ) — M?]
> 0,
if
c 1 1 c? 1 1 \2 M, 12
R>§(Ian| - Ml)+ 3T(|an| - Ml) - ;a,,|§

:R2.
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Therefore p(z) has all its zeros in
[z] < R,. (3.4)
Next we show that p(z) has no zeros in | z| << Ry . We have by (3.1)

n

8(2) = ay + ) (ar — ary) 2 — az™?

k=1
= a,+ f(2),  say. (3.5)
Let
M(R;) = Max | f(2)!.

Since R, > 1 and f(1) = —a,, we have M(R,) = | q, |.

Clearly

f@l <layi|z|"?+ Z lay — apq || 2 %,
k=1

and hence

M(R;) = Max | f(2)]

n
+1 w
<la | RYT 4 R Y lay —apy |
E=1

n

< ]an|R;’+1+R2"[Z (lae| — | arq|)cos

k=1
G (lap] + | apq |)sin a] (by Lemma 1)
= |a, | R 4 R, [} a, | (cos a 1 sin a)

n—1
+2Y lagisina— anl(cosa+sinoc)]
k=0

| ag |

= la, | Ry + la, | R [R— 220
a, |

(cos @ -+ sin cx)]

| g |
lan |
=M,, say. (3.6)

= |a, | R" [R2 + R — (cos a + sin a)]

Further, because f(0) = 0, f'(0) = a; — a, = b, we have by Lemma 4,

My\z| Mylz|+ R?|b|

[f@)) < B2 M, Bz 3.D

forjz| <R,.
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Combining (3.5) and (3.7), we get, for - =L R,

My = M,z R b

g = lagi —

R,_,zr" M,z b
Rz(ﬁ;lv:‘ﬁ' [z *M2 - R2 D "z (M, a, )
' R2M,)
-0,
if
o —RETO (M — 1ay ) ~ {RMOP(Msy — [ ag ) + 41 ay REAMP?

M2
- R3 )

which implies that p(z) has no zeros in

lz]| <Ry, (3.8)
and the theorem follows.

Proof of Theorem 2. Again let

n

)~ (1 =D p() = —a 2+ Y (@ - ay )+ ay
kel
= —a,z" -+ P(2), say, (3.9)
and
1 >
T(z) = z"P (:) =Y 2 Ma, — ap ) - az"
“’ k=1
Then for | z| = 1, we have

[Tl < Z (o = eq) - Z (! BI\'A-I L ,8/; () o | Ba
k=1 k=1

Hence by the maximum modulus principle,
[TO) =] a, — ayq ! < M;.
Therefore for | z ! <{ 1, we have by Lemma 2

. . )
M3 ‘ Z ’Z*‘ Ay an:_lwxw

‘ Z‘:(A -
T()‘ Mq“an*anlv Z“’ "WB’
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which implies

np (L My (z]+ | an—any|
P(Z)‘nglan_an_lHZ{%—M:,’ 2, < L (3.10)

If R > 1, then (1/R) e lies inside the unit circle for every real # and from
(3.10) it follows that

A/[% e lan ganvliR

| 8} < M.R"
P(Re )1 S aR Vd, ~~ Gpy | - A}\/[3R ’

(.11)

for every R == 1 and 0 real. Thus for = = R > I,
| g(Re®) > | —a, Rn+lgitnt 0 . P(Reit)|
= a,| R* — | P(Re'%)|
M3+|an_an_1iR

p P Rl — " -
= R MBR M3R + l ay — dyy (by (3 1]))
: M; + cR
= n+l 8 L7
:a’an M3Rn M3R ']l‘ ¢ (by (13))
M, 4 cR
~ n+l 7 s v 2
> R M,R MR T ¢
R MR — cRM, — o) — M
= M,R ¥ ¢ 3%n 3 n g
= 0,
if
cil 1 Gl e M
~ e f_ e} = e [ — — —
R: 2(Otn M3) ‘ g 4 (%n M3) Y, )
= Ry,

which implies that p(z) has all its zeros in
[z] < R,.

Next we show that p(z) has no zeros in | z | << R, . For this, we have by
3.9),

n
g(z) = q, -~ Z (a,‘» — akvl) ¥ — g zntt
k=1

= a, — f(2), say.
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Since R, = 1, we have obviously M(R,) =~ Max | f(z)| = | 4, |, and
[z]=R,

M(R,) = Max [ f(2)!

n
f§ I\ ay [ R;H] T z iak = i " RlL
n
< a,| R:'l -+ an z a, — ap_, |
‘ n n
<lan| R R [z (o — )+ Y (Bl + 1By )]
k=1

< (- 1By DRI+ R, [an — oyt (2 kzo 1Bl i B ) — B J

== Ry o Ry -+ (0 + | Bn DRy — (o + | /80 D1
=M,, say.

Lemma 4 and the lines of proof of Theorem 1 yield a proof of Theorem 2.
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