On the Eneström-Kakeya Theorem, II

N. K. Govil
Department of Mathematics, I.I.T., New Delhi-110029, India
AND
V. K. Jain
Department of Mathematics, I.I.T., Kharagpur-721302, India

Communicated by Oved Shisha
Received December 18, 1975

1. Introduction and Statement of Results

The following result is well known in the theory of the distribution of zeros of polynomials.

Theorem A (Eneström-Kakeya). If

$$
\begin{equation*}
a_{n} \geqslant a_{n-1} \geqslant a_{n-2} \geqslant \cdots \geqslant a_{1} \geqslant a_{0}>0 \tag{1.1}
\end{equation*}
$$

then, for $|z|>1, \sum_{k=0}^{n} a_{k} z^{k} \neq 0$.
There already exist in the literature $[1 ; 3$, Theorems $1-4 ; 5$, Theorem $3 ; 6]$ some extensions of the Eneström-Kakeya theorem. Govil and Rahman [3, Theorems 2, 4] generalized this theorem to polynomials with complex coefficients, first by considering the moduli of the coefficients to be monotonically increasing and then by assuming the real parts of the coefficients to be monotonically increasing.

While refining the results of Govil and Rahman [3, Theorems 2, 4], we [2] proved the following

Theorem B. Let $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$ be a polynomial with complex coeffcients such that

$$
\left|\arg a_{k}-\beta\right| \leqslant \alpha \leqslant \pi / 2, \quad k=0,1, \ldots, n,
$$

for some real β, and

$$
\begin{equation*}
\left|a_{n}\right| \geqslant\left|a_{n-1}\right| \geqslant \cdots \geqslant\left|a_{1}\right| \geqslant\left|a_{0}\right|>0 \tag{1.2}
\end{equation*}
$$

then $p(z)$ has all its zeros in the ring-shaped region given by

$$
\frac{1}{R^{n-1}\left[2 R\left(\left|a_{n}\right| /\left|a_{0}\right|\right)-(\cos \alpha+\sin \alpha)\right]}<|z| \leqslant R,
$$

where

$$
R=\cos \alpha+\sin \alpha+\frac{2 \sin x}{\left|a_{n}\right|} \sum_{k=0}^{n-1}\left|a_{k}\right| .
$$

Theorem C. Let $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$. If Re $a_{k}=\alpha_{k}, \operatorname{Im} a_{k}=\beta_{k}$, for $k=0,1,2, \ldots, n$, and

$$
\alpha_{n} \geqslant \alpha_{n-1} \geqslant \cdots \geqslant \alpha_{1} \geqslant \alpha_{0} \geqslant 0, \quad \alpha_{n}>0,
$$

then $p(z)$ has all its zeros in the ring-shaped region given by

$$
\frac{\left|a_{0}\right|}{R_{1}^{n-1}\left[2 R_{1} \alpha_{n}+R_{1}\left|\beta_{n}\right|-\left(\alpha_{0}+\left|\beta_{0}\right|\right)\right]} \leqslant|z| \leqslant R_{1},
$$

where

$$
R_{1}=1+\frac{1}{\alpha_{n}}\left[2 \sum_{k=0}^{n-1}\left|\beta_{k}\right|+\left|\beta_{n}\right|\right]
$$

In this paper, we have sharpened Theorems B and C. More precisely, we prove

Theorem 1. Let $p(z)=\sum_{k=0}^{n} a_{k} z^{k}(\not \equiv 0)$ be a polynomial with complex coefficients such that

$$
\left|\arg a_{k}-\beta\right| \leqslant \alpha \leqslant \pi / 2, \quad k=0,1, \ldots, n,
$$

for some real β, and

$$
\left|a_{n}\right| \geqslant\left|a_{n-1}\right| \geqslant \cdots \geqslant\left|a_{1}\right| \geqslant\left|a_{0}\right|
$$

then $p(z)$ has all its zeros in the ring-shaped region given by

$$
R_{3} \leqslant|z| \leqslant R_{2}
$$

Here

$$
R_{2}=\frac{c}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{c^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1}}{\left|a_{n}\right|}\right\}^{1 / 2}
$$

and

$$
\begin{aligned}
R_{3}= & \frac{1}{2 M_{2}{ }^{2}}\left[-R_{2}{ }^{2}|b|\left(M_{2}-\left|a_{0}\right|\right)+\left\{4\left|a_{0}\right| R_{2}{ }^{2} M_{2}{ }^{3}\right.\right. \\
& \left.\left.+R_{2}{ }^{4}|b|^{2}\left(M_{2}-\left|a_{0}\right|\right)^{2\}}\right\}^{1 / 2}\right]
\end{aligned}
$$

where

$$
\begin{align*}
M_{1} & =\left|a_{n}\right| R \\
M_{2} & =\left|a_{n}\right| R_{2}{ }^{n}\left[R+R_{2}-\frac{\left|a_{0}\right|}{\left|a_{n}\right|}(\cos \alpha+\sin \alpha)\right] \\
c & =\left|a_{n}-a_{n-1}\right| \\
b & =a_{1}-a_{0} \tag{1.3}
\end{align*}
$$

and R is as defined in Theorem B.
Theorem 2. Let $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$. If $\operatorname{Re} a_{k}=\alpha_{k}, \operatorname{Im} a_{k}=\beta_{k}$, for $k=0,1, \ldots, n$, and

$$
\alpha_{n} \geqslant \alpha_{n-1} \geqslant \alpha_{n-2} \geqslant \cdots \geqslant \alpha_{1} \geqslant \alpha_{0} \geqslant 0, \quad \alpha_{n}>0
$$

then $p(z)$ has all its zeros in the ring-shaped region given by

$$
R_{5} \leqslant|z| \leqslant R_{4}
$$

Here

$$
\begin{aligned}
R_{4}= & \frac{c}{2}\left(\frac{1}{\alpha_{n}}-\frac{1}{M_{3}}\right)+\left\{\frac{c^{2}}{4}\left(\frac{1}{\alpha_{n}}-\frac{1}{M_{3}}\right)^{2}+\frac{M_{3}}{\alpha_{n}}\right\}^{1 / 2} \\
R_{5}= & \frac{1}{2 M_{4}^{2}}\left[-R_{4}^{2}|b|\left(M_{4}-\left|a_{0}\right|\right)\right. \\
& \left.+\left\{4\left|a_{0}\right| R_{4}{ }^{2} M_{4}{ }^{3}+R_{4}^{4}|b|^{2}\left(M_{4}-\left|a_{0}\right|\right)^{2}\right\}^{1 / 2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
M_{3} & =\alpha_{n} R_{1}, \\
M_{4} & =R_{4}{ }^{n}\left[\left(\alpha_{n}+\left|\beta_{n}\right|\right) R_{4}+\alpha_{n} R_{1}-\left(\alpha_{0}+\left|\beta_{0}\right|\right)\right], \\
c & =\left|a_{n}-a_{n-1}\right| \\
b & =a_{1}-a_{0},
\end{aligned}
$$

and R_{1} is as in Theorem C .
As remarked earlier, Theorems 1 and 2 are respectively the refinements of Theorems B and C. For the sake of completeness we shall verify that Theorem 1 sharpens Theorem B and for this, we shall prove that

$$
\begin{equation*}
R \geqslant R_{2} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{R^{n-1}\left[2 R\left(\left|a_{n}\right| /\left|a_{0}\right|\right)-(\cos \alpha+\sin \alpha)\right]} \leqslant R_{3} \tag{1.5}
\end{equation*}
$$

For this, note that

$$
R=\frac{M_{1}}{\left|a_{n}\right|} \geqslant \frac{c}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{c^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1}}{\left|a_{n}\right|}\right\}^{1 / 2}
$$

if

$$
2 M_{1}^{2}=c\left(M_{1}-a_{n}\right)+\left\{c^{2}\left(M_{1}-a_{n}\right)^{2}+4 M_{1}^{3} a_{n}\right\}^{2},
$$

which is true if

$$
\begin{equation*}
\left(M_{1}-c\right)\left(M_{1}-\mid a_{n}!\right)=0 \tag{1.6}
\end{equation*}
$$

Since (1.6) obviously holds, (1.4) follows. To show (1.5) we have obviously from (1.4)

$$
\begin{align*}
& \frac{1}{R^{n-1}}\left[2 R\left(\left|a_{n}\right| /!a_{0}\right) \cdots(\cos \alpha+\sin x)\right] \\
& \leqslant \frac{1}{R_{2}^{n-1}\left[\left(R+R_{2}\right)\left(\left|a_{n}\right| / \mid a_{0}\right)-(\cos \alpha+\sin \alpha)\right]} \\
&=\frac{a_{0} \mid R_{2}}{M_{2}} . \tag{1.7}
\end{align*}
$$

Hence it is sufficient to show that

$$
\begin{equation*}
\frac{a_{0}: R_{2}}{M_{2}}: R_{3} \tag{1.8}
\end{equation*}
$$

Now (1.8) holds if

$$
\begin{equation*}
\left(R_{2} \mid b: M_{2}\right)\left(M_{2}-\left|a_{0}\right|\right) \leqslant 0 \tag{1.9}
\end{equation*}
$$

As (1.9) is evidently true, (1.8) follows. The fact that Theorem 2 is a refinement of Theorem C can be proved on similar lines and we omit the proof.

In general Theorems 1 and 2 give better results than Theorems B and C, but in some cases the results obtained by Theorems 1 and 2 are significantly better than those obtained respectively from Theorems B and C. To illustrate this, we consider

$$
\begin{gathered}
p(z)=2 z^{5} \div 2^{1 / 2}(1+i) z^{4}+3^{1 / 2} i z^{3}+(-1+i) z^{2}+(1+i) z-1 ; \\
\alpha=\pi / 2 ; \quad \beta=\pi / 2 .
\end{gathered}
$$

By Theorem B, we get that all the zeros of $p(z)$ are contained in the region $5.6017 \times 10^{-6} \leqslant|z| \leqslant 8.5605$, while Theorem 1 gives that all the zeros of $p(z)$ are contained in $33925 \times 10^{-6} \leqslant|z| \leqslant 3.2833$.

2. Lemmas

Lemma 1. If $\left|\arg a_{k}-\beta\right| \leqslant \alpha \leqslant \pi / 2,\left|\arg a_{k-1}-\beta\right| \leqslant \alpha$, and $\left|a_{k}\right| \geqslant$ $\left|a_{k-1}\right|$, then

$$
\left|a_{k}-a_{k-1}\right| \leqslant\left\{\left(\left|a_{k}\right|-\left|a_{k-1}\right|\right) \cos \alpha+\left(\left|a_{k}\right|+\mid a_{k-1}\right) \sin \alpha\right\}
$$

Lemma 1 is due to Govil and Rahman [3].

Lemma 2. If $f(z)$ is analytic inside and on the unit circle, $|f(z)| \leqslant M$ on $|z|=1, f(0)=a$, where $|a|<M$, then

$$
|f(z)| \leqslant M \frac{M|z|+|a|}{|a||z|+M}
$$

for $|z|<1$.
Lemma 2 is a well-known generalization of Schwarz's lemma.
The following lemma is due to Govil, Rahman, and Schmeisser [4].
Lemma 3. If $f(z)$ is analytic in $|z| \leqslant 1, f(0)=a$, where $|a|<1$, $f^{\prime}(0)=b,|f(z)| \leqslant 1$ on $|z|=1$, then, for $|z| \leqslant 1$,

$$
|f(z)| \leqslant \frac{(1-|a|)|z|^{2}+|b||z|+|a|(1-|a|)}{|a|(1-|a|)|z|^{2}+|b||z|+(1-|a|)} .
$$

The example $f(z)=\left(a+(b /(1+a)) z-z^{2}\right) /\left(1-(b /(1+a)) z-a z^{2}\right)$ shows that the estimate is sharp.

One gets easily from Lemma 3, the following
Lemma 4. If $f(z)$ is analytic in $|z| \leqslant R, f(0)=0, f^{\prime}(0)=b$, and $|f(z)| \leqslant M$ for $|z|=R$, then, for $|z| \leqslant R$,

$$
|f(z)| \leqslant \frac{M|z|}{R^{2}} \frac{M|z|+R^{2}|b|}{M+|z||b|}
$$

3. Proofs of the Theorems

Proof of Theorem 1. Consider

$$
\begin{align*}
g(z) & =(1-z) p(z)=-a_{n} z^{n+1}+\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right) z^{k}+a_{0} \\
& =-a_{n} z^{n+1}+P(z), \quad \text { say. } \tag{3.1}
\end{align*}
$$

If $T(z)$ denotes the polynomial $\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right) z^{n-k}+a_{0} z^{n}$, then $T(z)=$ $z^{n} P(1 / z)$ and for $|z|=1$, we have

$$
\begin{aligned}
|T(z)| \leqslant & \sum_{k=1}^{n}\left|a_{k}-a_{k-1}\right|+\left|a_{0}\right| \\
\leqslant & \sum_{k=1}^{n}\left(\left|a_{k}\right|-\left|a_{k-1}\right|\right) \cos \alpha \\
& +\sum_{k=1}^{n}\left(\left|a_{k}\right|+\left|a_{k-1}\right|\right) \sin \alpha+\left|a_{0}\right| \quad \text { (by Lemma 1) }
\end{aligned}
$$

$$
\begin{aligned}
= & \left|a_{n}\right|(\cos \alpha+\sin \alpha)+2 \sin \alpha \sum_{k=0}^{n-1}\left|a_{k}\right| \\
& -\left|a_{0}\right|(\cos \alpha+\sin \alpha-1) \\
\leqslant & \left|a_{n}\right|(\cos \alpha+\sin \alpha) \div 2 \sin \alpha \sum_{k=0}^{n-1}\left|a_{k}\right| \\
= & M_{1} .
\end{aligned}
$$

Hence, by the maximum modulus principle,

$$
|T(0)|=\left|a_{n}-a_{n-1}\right|<M_{1}
$$

Applying Lemma 2 to the function $T(z)$, we get for $|z| \leqslant 1$,

$$
|T(z)| \leqslant M_{1} \frac{M_{1}|z|+\left|a_{n}-a_{n-1}\right|}{\left|a_{n}-a_{n-1}\right||z|+M_{1}}
$$

which implies that

$$
\begin{equation*}
\left|z^{n} P\left(\frac{1}{z}\right)\right| \leqslant M_{1} \frac{M_{1}|z|+\left|a_{n}-a_{n-1}\right|}{\left|a_{n}-a_{n-1}\right||z|+M_{1}}, \quad|z| \leqslant 1 \tag{3.2}
\end{equation*}
$$

If $R>1$, then $(1 / R) e^{-i \theta}$ lies inside the unit circle for every real θ, and from (3.2) it follows that

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)\right| \leqslant M_{1} R^{n} \frac{M_{1}+\left|a_{n}-a_{n-1}\right| R}{\left|a_{n}-a_{n-1}\right|+M_{1} R} \tag{3.3}
\end{equation*}
$$

for every $R \geqslant 1$ and θ real.
Thus for $|z|=R>1$,

$$
\begin{align*}
\left|g\left(R e^{i \theta}\right)\right| & \geqslant\left|-a_{n} R^{n+1} e^{i(n+1) \theta}+P\left(R e^{i \theta}\right)\right| \\
& \geqslant\left|a_{n}\right| R^{n+1}-\left|P\left(R e^{i \theta}\right)\right| \\
& \geqslant\left|a_{n}\right| R^{n+1}-M_{1} R^{n} \frac{M_{1}+R\left|a_{n}-a_{n-1}\right|}{M_{1} R+\left|a_{n}-a_{n-1}\right|} \tag{3.3}\\
& \left.\geqslant\left|a_{n}\right| R^{n+1}-M_{1} R^{n} \frac{M_{1}+c R}{M_{1} R+c} \quad(\text { by } 1.3)\right) \\
& =\frac{R^{n}}{M_{1} R+c}\left[M_{1}\left|a_{n}\right| R^{2}-c R\left(M_{1}-\left|a_{n}\right|\right)-M_{1}^{2}\right] \\
& >0
\end{align*}
$$

if

$$
\begin{aligned}
R & >\frac{c}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{c^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1}}{\left|a_{n}\right|}\right\}^{1 / 2} \\
& =R_{2}
\end{aligned}
$$

Therefore $p(z)$ has all its zeros in

$$
\begin{equation*}
|z| \leqslant R_{2} \tag{3.4}
\end{equation*}
$$

Next we show that $p(z)$ has no zeros in $|z|<R_{3}$. We have by (3.1)

$$
\begin{align*}
g(z) & =a_{0}+\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right) z^{k}-a_{n} z^{n+1} \\
& =a_{0}+f(z), \quad \text { say. } \tag{3.5}
\end{align*}
$$

Let

$$
M\left(R_{2}\right)=\operatorname{Max}_{|z|=R_{2}}|f(z)| .
$$

Since $R_{2} \geqslant 1$ and $f(1)=-a_{0}$, we have $M\left(R_{2}\right) \geqslant\left|a_{0}\right|$.
Clearly

$$
|f(z)| \leqslant\left|a_{n}\right||z|^{n+1}+\sum_{k=1}^{n}\left|a_{k}-a_{k-1}\right||z|^{k}
$$

and hence

$$
\begin{align*}
M\left(R_{2}\right)= & \operatorname{Max}_{|z|=R_{2}}|f(z)| \\
\leqslant & \left|a_{n}\right| R_{2}^{n+1}+R_{2}{ }^{n} \sum_{k=1}^{n}\left|a_{k}-a_{k-1}\right| \\
\leqslant & \left|a_{n}\right| R_{2}^{n+1}+R_{2}{ }^{n}\left[\sum_{k=1}^{n}\left(\left|a_{k}\right|-\left|a_{k-1}\right|\right) \cos \alpha\right. \\
& \left.+\left(\left|a_{k}\right|+\left|a_{k-1}\right|\right) \sin \alpha\right] \quad(\text { by Lemma } 1) \\
= & \left|a_{n}\right| R_{2}^{n+1}+R_{2}{ }^{n}\left[\left|a_{n}\right|(\cos \alpha+\sin \alpha)\right. \\
& \left.+2 \sum_{k=0}^{n-1}\left|a_{k}\right| \sin \alpha-\left|a_{0}\right|(\cos \alpha+\sin \alpha)\right] \\
= & \left|a_{n}\right| R_{2}^{n+1}+\left|a_{n}\right| R_{2}{ }^{n}\left[R-\frac{\left|a_{0}\right|}{\left|a_{n}\right|}(\cos \alpha+\sin \alpha)\right] \\
= & \left|a_{n}\right| R_{2}{ }^{n}\left[R_{2}+R-\frac{\left|a_{0}\right|}{\left|a_{n}\right|}(\cos \alpha+\sin \alpha)\right] \\
= & M_{2}, \quad \operatorname{say} . \tag{3.6}
\end{align*}
$$

Further, because $f(0)=0, f^{\prime}(0)=a_{1}-a_{0}=b$, we have by Lemma 4,

$$
\begin{equation*}
|f(z)| \leqslant \frac{M_{2}|z|}{R_{2}{ }^{2}} \cdot \frac{M_{2}|z|+R_{2}{ }^{2}|b|}{M_{2}+|b||z|} \tag{3.7}
\end{equation*}
$$

for $|z| \leqslant \boldsymbol{R}_{\mathbf{2}}$.

Combining (3.5) and (3.7), we get, for $\mathcal{Z} \leqslant R_{2}$,

$$
\begin{aligned}
g(z) \mid \geqslant & \left|a_{0}\right|-\frac{M_{2} z \cdot M_{2} \left\lvert\, z \cdot \frac{R_{2}{ }^{2} \mid b}{R_{2}{ }^{2}}\right.}{M_{2}} z^{b!} \\
= & \frac{1}{R_{2}{ }^{2}\left(M_{2} \div|z| b\right) \mid z M_{2}{ }^{2} \div R_{2}{ }^{2} b}=\left(M_{2} \cdots: a_{0}\right) \\
& \left.-a_{0} \mid R_{2}{ }^{2} M_{2}\right] \\
> & 0,
\end{aligned}
$$

if
$|z|=\frac{-R_{2}{ }^{2}|b|\left(M_{2}-\mid a_{0}\right)+\left\{R_{2}{ }^{4}|b|^{2}\left(M_{2}-a_{0} \mid\right)^{2}+4\left|a_{0}\right| R_{2}{ }^{2} M_{2}{ }^{3}\right\}^{1 / 2}}{2 M_{2}{ }^{2}}$ $=R_{3}$,
which implies that $p(z)$ has no zeros in

$$
\begin{equation*}
|z|<R_{3} \tag{3.8}
\end{equation*}
$$

and the theorem follows.
Proof of Theorem 2. Again let

$$
\begin{align*}
g(z) & ==(1-z) p(z)=-a_{n} z^{n+1}+\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right) z^{k}+a_{0} \\
& =-a_{n} z^{n+1}+P(z), \quad \text { say } \tag{3.9}
\end{align*}
$$

and

$$
T(z)=z^{n} P\left(\frac{1}{z}\right)=\sum_{k=1}^{n} z^{n-k}\left(a_{k}-a_{k-1}\right) \div a_{0} z^{n}
$$

Then for $|z|=1$, we have

$$
\begin{aligned}
T(z) & \leqslant \sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right)+\sum_{k=1}^{n}\left(\mid \beta_{k \cdots 1} \vdots+\beta_{k i}\right) \div \alpha_{0}+\mid \beta_{0} \\
& =\left[\alpha_{n}+\left(2 \sum_{k=0}^{n-1}\left|\beta_{k}\right|+\left|\beta_{n}\right|\right)\right] \\
& =M_{3}, \quad \text { say. }
\end{aligned}
$$

Hence by the maximum modulus principle,

$$
|T(0)|=\left|a_{n}-a_{n-1}\right|<M_{3} .
$$

Therefore for $\mid z\} \leqslant 1$, we have by Lemma 2

$$
T(z) \leqslant M_{3} \frac{M_{3} \mid z i+: a_{n}-a_{n-1}}{\mid a_{n}-a_{n-1} z},
$$

which implies

$$
\begin{equation*}
\left|z^{n} P\left(\frac{1}{z}\right)\right| \leqslant M_{3} \frac{M_{3}|z|+\left|a_{n}-a_{n-1}\right|}{\left|a_{n}-a_{n-1}\right||z|+M_{3}}, \quad \mid z \leqslant \leqslant \tag{3.10}
\end{equation*}
$$

If $R>1$, then $(1 / R) e^{-i \theta}$ lies inside the unit circle for every real θ and from (3.10) it follows that

$$
\begin{equation*}
P\left(R e^{i \theta}\right) \leqslant M_{3} R^{n} \frac{M_{3}}{\left|a_{n}-a_{n}-a_{n-1}\right| R}, \tag{3.11}
\end{equation*}
$$

for every $R \geqslant 1$ and θ real. Thus for $z=R>1$,

$$
\begin{aligned}
\left|g\left(R e^{i \theta}\right)\right| & \geqslant-a_{n} R^{n+1} e^{i(n+1) \theta}+P\left(R e^{i \theta}\right) \mid \\
& \geqslant\left|a_{n}\right| R^{n+1}-P\left(R e^{i \theta}\right) \mid \\
& \geqslant a_{n} \left\lvert\, R^{n+1}-M_{3} R^{n} \frac{M_{3}+\left|a_{n}-a_{n-1}\right| R}{M_{3} R+\mid a_{n}-a_{n-1}}\right. \\
& =a_{n} \left\lvert\, R^{n+1}-M_{3} R^{n} \frac{M_{3}+c R}{M_{3} R+c} \quad(\text { by }(1.3))\right. \\
& \geqslant x_{n} R^{n+1}-M_{3} R^{n} \frac{M_{3}+c R}{M_{3} R+c} \\
& =\frac{R^{n}}{M_{3} R+c}\left[M_{3} \alpha_{n} R^{2}-c R\left(M_{3}-\alpha_{n}\right)-M_{3}{ }^{2}\right] \\
& >0,
\end{aligned}
$$

if

$$
\begin{aligned}
R & >\frac{c}{2}\left(\frac{1}{x_{n}}-\frac{1}{M_{3}}\right)+\left\{\frac{c^{2}}{4}\left(\frac{1}{x_{n}}-\frac{1}{M_{3}}\right)^{2}-\frac{M_{3}}{x_{n}}\right\}^{1 / 2} \\
& =R_{4}
\end{aligned}
$$

which implies that $p(z)$ has all its zeros in

$$
|z| \leqslant R_{4}
$$

Next we show that $p(z)$ has no zeros in $|z|<R_{5}$. For this, we have by (3.9),

$$
\begin{aligned}
g(z) & =a_{0}+\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right) z^{k}-a_{n} z^{n+1} \\
& =a_{0}-f(z), \quad \text { say. }
\end{aligned}
$$

Since $R_{4} \geqslant 1$, we have obviously $M\left(R_{4}\right)=\operatorname{Max}_{|z|=R_{4}}|f(z)| \geqslant\left|a_{0}\right|$, and $M\left(R_{4}\right)=\operatorname{Max}_{y z=R_{4}} \mid f(z)$

$$
\begin{aligned}
& \leqslant\left|a_{n}\right| R_{4}^{n+1} \div \sum_{k=1}^{n}\left|a_{k}-a_{k-1}\right| R_{1}^{k} \\
& \leqslant\left|a_{n}\right| R_{4}^{n \cdot 1}+R_{4}{ }^{n} \sum_{k=1}^{n}\left|a_{k}-a_{k-1}\right| \\
& \leqslant\left|a_{n}\right| R_{4}^{n ; 1}+R_{4}{ }^{n}\left[\sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right)+\sum_{k=1}^{n}\left(\left|\beta_{k}\right|+\mid \beta_{k-1}\right)\right] \\
& \leqslant\left(\alpha_{n}+\left|\beta_{n}\right|\right) R_{4}^{n+1}+R_{4}{ }^{n}\left[\alpha_{n}-\alpha_{0}+\left(2 \sum_{k=0}^{n-1}\left|\beta_{k}\right|+\left|\beta_{n}\right|\right)-\left|\beta_{0}\right|\right] \\
& =R_{4}{ }^{n}\left[\alpha_{n} R_{1}+\left(\alpha_{n}+\left|\beta_{n}\right|\right) R_{4}-\left(\alpha_{0}+\left|\beta_{0}\right|\right)\right] \\
& =M_{4}, \quad \text { say. }
\end{aligned}
$$

Lemma 4 and the lines of proof of Theorem 1 yield a proof of Theorem 2.

References

1. G. T. Cargo and O. Shisha, Zeros of polynomials and fractional order differences of their coefficients, J. Math. Anal. Appl. 7 (1963), 176-182.
2. N. K. Govil and V. K. Jain, On the Eneström-Kakeya theorem, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 27 (1973), 13-18.
3. N. K. Govil and Q. I. Rahman, On the Eneström-Kakeya theorem Tôhoku Math. J. 20 (1968), 126-136.
4. N. K. Govil, Q. I. Rahman, and G. Schmeisser, On the derivative of polynomial, to appear.
5. A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull. 10 (1967), 53-63.
6. P. V. Krishnaiah, On Kakeya's Theorem, J. London Math. Soc. 30 (1955), 314-319.
